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ABSTRACT
Agents in a multiagent systemmust learn diverse policies that allow
them to express complex inter-agent synergies required for team-
work. Multiagent Quality-Diversity methods partially address this
by transforming the agents’ large joint policy space to a tractable
sub-space that can produce synergistic agent policies. However,
in multi-objective problems with asymmetric agents (agents with
different capabilities and objectives), the search for diversity is fun-
damentally guided by the need to learn a Pareto front of policies
that represents diverse trade-offs between agent-specific and team
objectives. This work introducesMulti-objective Asymmetric Island
Model (MAIM), a multi-objective multiagent learning framework
for the discovery of generalizable agent synergies and trade-offs
via adaptation of population dynamics over a spectrum of tasks.
The key insight is that the competitive pressure arising from the
changing populations on the team tasks forces agents to acquire
robust synergies required to balance their individual and team ob-
jectives in response to the nature of their teams and task dynamics.
Results on several variations of a multi-objective habitat problem
highlight the potential of MAIM in producing teams with diverse
specializations and trade-offs that readily adapt to unseen tasks.
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• Computing methodologies→Multi-agent systems; Coop-
eration and coordination.
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1 INTRODUCTION
Multiagent learning is a promising paradigm that has shown success
in a wide variety of real-world problems such as air traffic control
[8], robotic automation [10, 13] and healthcare coordination [14].
Interestingly, a majority of these applications rely on asymmetric
agents (agents with different capabilities and objectives) to not

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

only learn good joint actions, but also learn robust inter-agent
synergieswhich are crucial for adaptation to changes in the team and
task dynamics. The problem is further aggravated when multiple
objectives must be optimized simultaneously.

Recent work in Quality Diversity (QD) approaches has paved
the way towards learning a repertoire of diverse policies instead of
optimizing one optimal policy [18, 20]. The shift towards diversity-
first methods can potentially allow asymmetric agents to discover
several complementary policies which are conducive to cooperative
team behaviors. Traditional QD methods operate by explicitly pop-
ulating the space of policies so as to maximize coverage. However,
exhaustively working through the policy space is largely intractable
for multiagent systems since the joint policy space grows exponen-
tially with the number of agents.

Multiagent Coevolution for Asymmetric Agents (MCAA), a re-
cently proposed multiagent framework, partially addresses the dif-
ficulty of exploring a joint policy space by filtering it into smaller
sub-spaces that yield good teaming policies [6]. However, the fil-
tering is driven by the performance of agents on a single team
objective which often leads to over-specialization of agent syner-
gies and behaviors. In multi-objective settings, it is crucial to learn
generalizable inter-agent synergies that can foster diverse trade-
offs between team and agent-specific objectives in order to learn a
Pareto front with sufficient coverage in the objective space [21].

This work introduces Multi-objective Asymmetric Island Model
(MAIM), a multiagent learning framework that produces teams of
asymmetric agents capable of learning diverse inter-agent synergies
and team trade-offs that can be generalized across a variety of
tasks. MAIM combines Quality Diversity optimization and multi-
objective coevolutionary optimization with a migration strategy
that allows both processes to converge to a diverse set of policies
that can balance agent-specific and team objectives in order to work
together as robust teams.

The Quality Diversity process enables a population of agents
to learn diverse primitive behaviors that maximize their agent-
specific utility (preferences towards objectives). The coevolutionary
optimization on the other hand, concurrently evolves a population
of teams (groups of agents) to find Pareto fronts that balance the
team objectives in the objective space. Periodically, policies from
the QD process are migrated to replace the policies from the lowest
fitness teams thereby injecting diversity in the team population,
whereas policies from teams on the Pareto front are migrated to the
QD process to bias its search towards regions of the policy space
conducive to good team behaviors.

A softmax distribution guides the allocation of policies from
the QD to the coevolutionary process and is updated after each
migration so as to maximize the cumulative agent utility across
the team tasks. The competitive pressure arising from the changing
distribution of asymmetric agents across the team tasks forces agents
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to acquire generalizable inter-agent synergies that allow agents to
exercise diverse trade-offs between agent-specific and team objectives
in response to the dynamics of the task, team and agent behaviors.

Experiments in a multi-objective asymmetric habitat problem
highlight the potential of MAIM in producing teams that learn
diverse strategies and specializations to balance the agent-specific
and team objectives across a spectrum of seen and unseen tasks.

2 RELATEDWORK
2.0.1 Multiagent Learning. A key challenge of learning in multi-
agent settings is credit assignment: agents must learn to access their
own contribution in a team using a sparse team feedback [11, 24].
Reward shaping techniques can address this by transforming a team
reward to "stepping stone" rewards [16]. However, this requires
intimate knowledge of the problem and is susceptible to creating
misaligned rewards [7]. Techniques like Multiagent DDPG use a
centralized-learning-decentralized-execution paradigm in which
a single learner optimizes the joint policy [15]. Although this can
make learning tractable, it is often difficult to scale to asymmetric
multiagent settings since agents have distinct action spaces and
individual objectives.

Evolutionary and population based gradient-free methods offer
a promising solution since they are particularly suitable for learn-
ing with sparse feedback. Multiagent Evolutionary Reinforcement
Learning (MERL) in particular, combines the strengths of gradi-
ent based policy and gradient free evolutionary optimization to
learn in cooperative settings [9]. By evolving policies trained on
agent-specific behaviors to maximize team fitness, MERL implicitly
selects for alignment. However, the shared policy and population
architecture limits MERL to symmetric multiagent settings.

2.0.2 Quality Diversity. Quality Diversity (QD) are a family of
methods that shift the focus from optimizing one policy to discov-
ering a diverse repertoire of policies [17]. In its most basic form
a QD process can be described as a two step iterative process: 1)
Mutate a policy from a population of policies; and 2) Catalogue
the mutated policy in the population policy space, selecting for the
higher fitness policy in case of replacement [3]. A major challenge
in applying QD to complex problemwith unknown variables, which
is typical of multiagent problems, is its reliance on a definition of
the policy space. Recent methods have addressed this by using a
dimensionality reduction method to infer the policy space [4].

However, scaling this effectively to multiagent systems remains
challenging due to the large policy space that is a resultant of agents’
policies being largely dependent on each other. Recent advances
to alleviate this include Multiagent Coevolution for Asymmetric
Agents (MCAA), Malthusian Reinforcement Learning (MRL) and
Minimum Criteria Coevolution (MCC), which effectively transform
the policy space into smaller tractable sub-spaces by means of pop-
ulation dynamics (MCAA and MRL) or resource limitation (MCC)
[2, 6, 12]. While these methods are able to discover diverse agent
policies, they are difficult to scale to multi-objective settings which
require agents to learn trade-offs between individual and team ob-
jectives. Our method bridges this gap by transforming the policy
space into a tractable space that can produce policies with diverse
trade-offs.

3 MULTI-OBJECTIVE ASYMMETRIC ISLAND
MODEL

Multi-Objective Asymmetric Island Model (MAIM) is a multiagent
framework that trains teams of asymmetric agents (agents with
different objectives and capabilities) to balance their individual
(potentially conflicting) objectives with the team objectives on a
wide set of tasks. MAIM produces a set of "islands" that allow agents
to maximize their individual objectives and a set of "mainlands"
on which teams of agents are evolved to balance team objectives.
Figure 1 presents an overview of MAIM.

Each island in MAIM hosts a population of agents of a unique
class that share a utility function (conspecific utility), which is a
scalarization function that maps the team reward to a scalar that
describes the class’s preferences: how the class values each team
objective. A Quality-Diversity process with an unstructured archive
[4, 6] is carried out on each island to enable the local population to
learn diverse policies that maximize the island’s conspecific utility.
Figure 2 provides an overview of the island process.

A mainland in MAIM represents a unique team task that de-
mands a specific Pareto set of team behaviors that can balance the
objectives associated with it. Each mainland hosts a population of
teams (group of policies) that is trained to learn a Pareto front of
team behaviors (joint policies of the agents in the team) using a
coevolutionary algorithm.

Policies from the islands are periodically sampled, using a soft-
max distribution 𝜇𝑖 associated with each island 𝑖 , to replace the
policies in the worst performing teams on the mainlands. 𝜇𝑖∈𝐼 on
each island governs the allocation of its population to themainlands.
The policy migration allows teams on mainlands to incorporate

Figure 1: Each agent class is assigned to an island. Agents
learn diverse primitive behaviors that maximize their agent-
specific utilities using Quality Diversity (figure 2). Eachmain-
land (represents a unique team task) evolves a population of
teams to learn a Pareto front that balances the objectives of
that mainland. Every 𝑁 iterations, policies from the Pareto
front teams are migrated from the mainlands to the islands
to bias the population on the islands towards diversity that
is conducive to good team behaviors. Similarly, policies from
the islands replace the worst performing teams on the main-
lands, which results in increased diversity on the mainlands.
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Figure 2: Quality-Diversity optimization on an Island. Agents
are trained to optimize a conspecific utility (A). Data collected
from the training (B) is used to train a dimensionality reduc-
tion method (C). The resultant latent space acts as a behavior
space that is filled by mutating policies on the island (D).

diverse policies discovered on the islands. Likewise, policies on the
mainlands from the best performing teams (on the Pareto front)
are migrated to the islands to bias their diversity search towards
regions of the policy space that produce good team behaviors.

The softmax distribution on each island is updated after every
migration, via a gradient rule, to maximize the expected conspecific
utility of agents on that island across all mainlands (team tasks).
This update ensures that the allocation of island policies to the
mainlands is commensurate to their relative performance on the
mainlands. Each mainland has a fixed carrying capacity (maximum
number of policies that can reside on it) which forces the island
populations to learn complementary policies that can work together
with other agents classes across the spectrum of tasks (mainlands).

3.0.1 Conspecific Utility Optimization on Islands. The islands fol-
low a QD approach (adapted from [4]): Each island hosts a popula-
tion of policies (neural networks initialized with random weights)
for a specific agent class. A softmax distribution 𝜇𝑖 is initialized
with a weight vector 𝜔𝑖 for each island. A QD process (described
next) for each island runs in parallel for 𝑁 iterations (algorithm
1, lines 2-3). A random policy 𝜋 is sampled from the population
𝑝𝑜𝑝𝑖 (line 4) and is mutated (Gaussian perturbation applied to the
weights of the neural network; line 5) to create a new policy 𝜋′ on
island 𝑖 . A rollout is conducted for 𝜋′ in the environment which
generates conspecific data 𝜏 and a reward vector (with a reward
value for each objective) 𝑟 (line 6). The reward vector is then scalar-
ized using the conspecific utility 𝑢𝑖 (), which is used to update the
weights of 𝜋′using PPO [23] (lines 7-8). The updated policy is added
to the island population and its corresponding conspecific data 𝜏
is added to the island dataset (lines 9-10). Any suitable data that
summarizes an agents behavior in the environment can be used as
the conspecific data. Prior works have successfully used a variety
of metrics including agents’ trajectory, end effector positions and
agent speeds to infer a latent policy space [4, 6]. Conspecific data
used in our experiments is specified in section 4.3.2.

After the 𝑁 QD iterations, the dataset on each island is used to
re-train a dimensionality reduction method that produces a reduced
latent space which is used as the policy space for the subsequent
island iterations (algorithm 1, line 12). The policies are then pro-
jected in the updated latent space (using 𝜏), and policies with high
conspecific utility are retained in case of overlaps [4].

Algorithm 1: Islands (optimize conspecific utilities)
1 Function run_islands(𝑝𝑜𝑝𝐼 :|𝐼 | Populations):
2 for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 0 to 𝑁 do
3 Do in parallel for island 𝑖 ∈ 𝐼
4 sample policy 𝜋 ∈ 𝑝𝑜𝑝𝑖
5 𝜋′ = mutate(𝜋 ) // perturb policy weights

6 𝜏 , 𝑟 = rollout (𝜋′) // local rollout

7 𝑟𝑢 ← 𝑢𝑖 (𝑟 ) // compute utility from reward vector

8 update 𝜋′ (𝜏 , 𝑟𝑢 ) using PPO // update policy 𝜋 ′
9 𝑝𝑜𝑝𝑖 ← 𝑝𝑜𝑝𝑖 ∪ 𝜋′ // add to island population

10 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑖 ← 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑖 ∪ (𝜏, 𝜋′)

11 foreach island 𝑖 ∈ 𝐼 do
12 train_DR(𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑖 ) // update latent space

13 foreach policy (𝜏, 𝜋) ∈ 𝑝𝑜𝑝𝑖 do
14 project(𝜏) // project to latent space

3.0.2 Pareto Fronts on theMainlands. Eachmainland hosts a unique
team task. Initially, policies from the islands are sampled and as-
signed to the mainlands (using 𝜇𝑖 ...𝐼 ) to create a population of
teams on each mainland. A team 𝑡 on mainland 𝑚 is a set of 𝑡𝑛
policies created by randomly grouping policies assigned to𝑚. Ran-
dom grouping ensures that the team composition on a mainland is
reflective of the relative proportion of island policies on it.

Teams on the mainlands are evolved for 𝑁 generations using
a standard coevolutionary algorithm [19] with the selection cri-
terion adapted from Non-dominated Sorting Genetic Algorithm
(NSGA-II) [5]. The goal on each of the mainlands is to learn a Pareto
Front of teams (groups of policies) that maximize the objectives
on that mainland. Teams are evaluated in the environment and
assigned a team reward vector Φ (a vector of scalar team rewards
for each objective) (algorithm 2, lines 4-6). The teams are sorted
using Non-dominated sorting [5] by projecting their corresponding
reward vectorsΦ𝑡 ...𝑇 in the objective space and the pair-wise crowd-
ing distances are computed (lines 7-8). The top 𝑒 teams from the
dominating fronts are stored as elites 𝐸 (by prioritizing crowding
distance in cases where an entire front cannot be included in 𝐸; line
9). This ensures that at the end of a generation, the teams with the
highest objectives and coverage in the objective space are retained
for the next generation. The policies from the non-elite ( |𝑇 | − |𝐸 |)
teams are then subjected to crossover with policies from the elites
using binary tournament and mutation (Gaussian perturbation to
weights) to create new teams (lines 10-14).

3.0.3 Migrations. The conspecific utility maximization on the is-
lands and the Pareto front optimization on the mainlands have
distinct functions and largely run in parallel. To leverage the ben-
efits of both, it is pivotal to exchange information between the
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Algorithm 2:Mainlands (learn Pareto fronts)
1 Function run_mainlands(𝑇𝑀 :|𝑀 | populations of |𝑇 |

teams):
2 Do in parallel for mainland𝑚 ∈ 𝑀
3 𝑇 ← 𝑇𝑚 // Teams for mainland 𝑚

4 for 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 0 to 𝑁 do
5 foreach team 𝑡 ∈ 𝑇 do
6 Φ𝑡 = evaluate (𝑡 )
7 𝑇 ← rank (𝑇 ) // Non-dominated sort using Φ0:𝑇

8 𝐶 ← crowding_distance (𝑇 )
9 𝐸 = 𝑇 [0 : 𝑒] // select top e elite teams using 𝐶

10 Select the remaining ( |𝑇 | − 𝑒) teams from 𝑇 , to
form set 𝑆 using binary tournament selection

11 while |𝑆 | < ( |𝑇 | − 𝑒) do
/* apply crossover and mutation operators */

12 𝜋off ← crossover({(𝜋𝑥 , 𝜋𝑦 ) |
𝜋𝑥 ∈ 𝐸, 𝜋𝑦 ∈ 𝑆, (𝜋𝑥 , 𝜋𝑦) ∈ 𝐼 })

13 𝜋off ← mutate (𝜋off )
14 𝑆 ← 𝑆 ∪ 𝜋off
15 𝑇 ← 𝑆 ∪ 𝐸

Algorithm 3:Multi-Objective Asymmetric Island Model
1 Initialize 𝐼 islands, one island per agent class
2 Initialize a population 𝑝𝑜𝑝𝑖 of policies 𝜋 for each 𝑖 ∈ 𝐼
3 Initialize𝑀 Mainlands, one per team task
4 Function MAIM(𝐼 :Islands,𝑀 :Mainlands):
5 for 𝑘 ← 0 to∞ do
6 do in parallel
7 𝑃𝑜𝑝𝐼 = run_islands (𝑃𝑜𝑝𝐼 ) // conspecific 𝑢𝑖 ...𝐼

8 𝑇𝑀 = run_mainlands (𝑇𝑀 ) // Pareto fronts

9 foreach island 𝑖 ∈ 𝐼 do
10 𝑃𝑜𝑝𝑖 ← 𝑃𝑜𝑝𝑖 ∪ 𝑇𝑚,𝑖 [0 : 𝑒]) ∀𝑚 ∈ 𝑀
11 𝑤𝑘+1,𝑖 ← update(𝑤𝑘,𝑖 ) // according to eqn (1)

12 foreach mainland𝑚 ∈ 𝑀 do
/* Replace ( |𝑇 | − 𝑒 ) teams by sampling islands */

13 𝑇𝑚 ← 𝑇𝑚 [0 : 𝑒] ∪ (|𝑇 | − 𝑒) ∼𝑤𝑘+1,𝑖 , ∀𝑖 ∈ 𝐼

two processes. Migration is done asynchronously after every 𝑁
iterations on the islands and the mainlands. Policies from the 𝐸 elite
teams from each mainland are added to the populations on islands
(algorithm 3, lines 9-10). The migrated policies will participate in
the following island rollouts (algorithm 1, lines 4-6), provide con-
specific data (line 10) and influence the latent space inference (line
12) to bias QD to search in regions of the policy space that yield
successful teaming policies.

The softmax distribution for each island 𝝁(𝒎, 𝒊) = 𝒆𝒘𝒎,𝒊
∑

𝒋−𝒎 𝒆𝒘𝒋,𝒊 is
then updated using a gradient rule (equation 1) to move in the
direction that maximizes the expected conspecific utility (𝑢𝑚,𝑖 )
across the mainlands (algorithm 3, line 11).

𝜔𝑘+1,𝑖 = 𝜔𝑘,𝑖 + 𝛼

|𝑀 |∑︁
𝑚=1
∇𝑤𝜇 (𝑚, 𝑖) (𝑢𝑚,𝑖 − 𝜈𝑙𝑜𝑔𝜇 (𝑚, 𝑖))

 (1)

In equation 1, 𝜔𝑘,𝑖 is the weight vector for the softmax distribu-
tion 𝜇 (𝑚, 𝑖) on island 𝑖 , for iteration 𝑘 (algorithm 3, line 5). 𝛼 and
𝜈 are the adaptation and regularization rates. 𝑢𝑚,𝑖 is the cumula-
tive expected conspecific utility of 𝑝𝑜𝑝𝑖 on mainland𝑚. To ensure
that at least a small non-zero number of policies from each island
participate on the mainlands, we introduce entropy regularization
𝑙𝑜𝑔𝜇 (𝑚, 𝑖). This prevents early over-specialization [6] and also en-
sures that agents learn generalizable policies that can work across
several seen and potentially held-out tasks.

Finally, the updated distribution is used to allocate policies from
the islands to replace the policies in the worst performing ( |𝑇 |− |𝐸 |)
teams on the mainlands (algorithm 3, line 13). This replacement
allows the teams on the mainlands to incorporate diversity from the
islands. The combination of diversity search with conspecific utility
maximization and team Pareto front optimization, allows MAIM to
yield teams of asymmetric agents that learn to balance their (poten-
tially conflicting) conspecific utilities with the team objectives.

4 EXPERIMENTAL SETUP
We conduct three experiments to inspect the team performance,
discovered Pareto fronts, and diverse agent synergies acquired with
MAIM: 1) Asymmetric Coordination to evaluate team perfor-
mance across five unique bi-objective scenarios that call for diverse
agent synergies; 2) Adaptation to Held-out Tasks for accessing
MAIM’s ability to learn agent synergies and trade-offs that can
be generalized to unseen tasks; and 3) Agent and Team Objec-
tive Trade-offs to examine changing relationships and trade-offs
between agents in response to a changing team task.

4.1 Multi-Objective Habitat Problem
We introduce the multi-objective asymmetric habitat problem that
builds off of design motifs from several cooperative multiagent
problems (rover exploration [6], Allelopathy and Clamity [12]).
Agents of three unique classes are deployed in a remote environ-
ment to conduct pre-mission activities for setting up a habitat. The
agent classes are: 1) Rovers with vision sensors; 2) Excavators with
digging equipment; and 3) Aerial drones with communication ca-
pabilities. The agents must work together in teams to find different
grades of dig sites, excavate them and communicate the number
and grade of excavated sites back to a ground station.

Dig sites are graded as either coarse-grained 𝐾𝑐 or fine-grained
𝐾𝑓 . Gradation is an important indicator of properties like compress-
ibility which dictate the value of a dig site in the habitat mission.

Rovers are equipped with a sensor that captures the presence
of other agents within their observation radius (eqn 2) and a sensor
that captures the presence of marked and unmarked dig sites around
them (eqn 3). To successfully mark a site, 𝑐 rovers (referred to as
the coupling requirement) must visit the site simultaneously [6].

𝑆𝑎,𝑞,𝑖 =
∑︁
𝑗∈ 𝐽𝑞

1
𝑑 (𝑖, 𝑗) (2) 𝑆𝑎,𝑞,𝑖 =

∑︁
𝑘∈𝐾𝑞

𝑣𝑘

𝑑 (𝑖, 𝑘) (3)
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In equation 2, 𝑆𝑎,𝑞,𝑖 provides the density of agents of class 𝑎 in
quadrant 𝑞 of the environment (we use four quadrants, centered
around the agent) for agent 𝑖; 𝐽𝑞 is the set of agents of class 𝑎 in 𝑞,
within the agent’s observation radius, and 𝑑 (𝑖, 𝑗) is the Euclidean
distance between agent 𝑖 and another agent 𝑗 ∈ 𝐽𝑞 .

In equation 3, 𝑆𝑎,𝑞,𝑖 gives the density of dig sites of class 𝑎 (coarse
or fine) in quadrant 𝑞, within agent 𝑖’s observation radius. 𝑣𝑘 repre-
sents a scalar value associated with dig site 𝑘 . Finally, 𝑑 (𝑖, 𝑗) is the
Euclidean distance between agent 𝑖 and a dig site 𝑘 ∈ 𝐾𝑞 .

The Excavators are equipped with two density sensors: one for
capturing the density of agents around them (eqn 2) and the other
for capturing the density of marked dig sites in their observation
radius (eqn 3). Like the rovers, 𝑐 excavators must visit a marked
site simultaneously in order to successfully excavate it.

The Drones are responsible for communicating any excavated
sites back to the ground station: the team fitness (eqn 4) will only
take into consideration excavated sites that are within a drone’s
observation radius. Like the excavators, drones have a sensor for
computing agent densities and one for measuring dig site densities.

4.1.1 Team Fitness. The habitat problem has two objectives: exca-
vating coarse 𝐾𝑐 and fine 𝐾𝑓 dig sites. The fitness of a team Φ𝑡 is
a vector of size 2 with values corresponding to scalar rewards for
excavating 𝐾𝑐 and 𝑘𝑓 . Formally:

𝜙0 =
∑
𝑘∈𝐾 𝑣𝑘 𝐾 = {𝑘 ∈ 𝐾𝑐 |𝐶 (𝑐,𝑘 ) ·𝑂𝑘 }

𝜙1 = |𝐾 | · 𝑒
−|𝐾 |
𝜓 𝐾 = {𝑘 ∈ 𝐾𝑓 |𝐶 (𝑐,𝑘 ) ·𝑂𝑘 }

(4)

In equation 4, the reward 𝜙0 for excavating coarse sites 𝐾𝑐 in-
creases linearly while the reward 𝜙1 for fine sites 𝑘𝑓 is modeled as
a smooth curve that plateaus after excavating a maximum number
of sites𝜓 . 𝐶 (𝑐,𝑘 ) is an indicator function set to true if 𝑐 excavators
visited the site 𝑘 simultaneously, and 𝑂𝑘 is an indicator that is true
if site 𝑘 was within the observation radius of a drone.

4.1.2 Conspecific Utilities. The conspecific utility for each agent
class is a linear weighted sum that dictates the class’s preferences
for visiting coarse and fine dig sites.

𝑢𝑖 = 𝑤0 ·
∑︁
𝑘∈𝐾𝑐

𝑣𝑘 +𝑤1 ·
∑︁
𝑘∈𝐾𝑓

𝑣𝑘 (5)

Equation 5 give utility 𝑢𝑖 for an agent of class 𝑖 . The class spe-
cific weights 𝑤0 and 𝑤1 used in our experiments are specified in
4.3.1. The conspecific utility acts as a dense reward for each agent
class that allows it to learn diverse primitive behaviors, such as
navigating to a dig site, on the islands (algorithm 1, line 7).

4.1.3 Agent Relationships and Trade-offs. The multi-objective
fitness Φ𝑡 captures a rich constellation of dependencies and trade-
offs: On the highest level, teams of agents must be able to optimize
both the team objectives (𝜙0, 𝜙1), while simultaneously maximizing
their preferences for those objectives (equation 5). On a secondary
level, this balancing act is further influenced by the agent synergies
required to coordinate: 𝑐 rovers must mark a dig site simultaneously
(spatial intra-agent coupling) to make it available for 𝑐 excavators
(temporal inter-agent coupling) which can then dig it simultane-
ously (spatial intra-agent coupling). This is followed by the drones
(temporal inter-agent coupling) that need to team with other agents

to ensure that excavated sites are considered by the team fitness
(indicator 𝑂𝑘 in equation 4). To learn and maintain these synergies,
agents must learn to balance their utilities with the team objectives,
and more subtly with the utilities of other agent classes.

4.2 Compared Baselines
The primary metric to gauge the benefits of MAIM is the Pareto
front of team policies. Pareto dominating policies are conducive to
high team fitness and they implicitly require the agents to learn
diverse synergies in order to successfully cooperate on a wide set of
scenarios in the habitat problem. We also empirically evaluate the
coverage of the Pareto front in the team objective space by testing
the generalizability of the acquired agent synergies to an unseen
task that requires them to adapt their conspecific utilities and team
fitness trade-offs (section 4.1.3).

We compare the Parento front discovered by MAIM against sev-
eral variants of traditional multi-objective and multiagent learning
methods. Each baseline addresses a particular aspect of the prob-
lem that MAIM intends to solve: 1) Multiagent Coevolution for
Asymmetric Agents (MCAA), an island model based framework for
discovering specialized inter-agent synergies on cooperative tasks
[6]; 2) NSGA-II, a standard evolutionary algorithm for optimizing
multiple objectives by explicitly selecting for Pareto dominating so-
lutions with wide coverage in the objective space [5]; 3) Malthusian
Reinforcement Learning (MRL), a reinforcement learning frame-
work that promotes agent specialization via shifting population
dynamics; and 4) SPEA2, a multi-objective optimization method
that archives and ranks candidate solutions by using a density
estimate in the objective space [26].

MAIM combines the seemingly orthogonal strengths of these
baselines: It employs the combination of diversity search and opti-
mization via an island model (like MCAA) to concurrently optimize
conspecific and team utilities, with a migration policy that allows
team fitness to guide diversity search. It allows agents to discover
inter-agent synergies by applying selection pressure via changing
population dynamics (like MRL), and adopts non-dominated sort-
based selection (like NSGA-II) within a coevolutionary algorithm
to allow teams to discover Pareto fronts with wide coverage. The
resultant composition of these design choices produces MAIM: a
multi-objective multiagent learning framework for the discovery of
generalizable agent synergies and trade-offs that foster teamwork.

4.3 Experimental Parameters
4.3.1 Habitat Environment. The habitat environment is a continu-
ous 2D space of size 60x60 units, unless specified otherwise.

Inputs The input to the drones and excavators is a vector of 20
values: four density values (one per quadrant) for each agent class
(eqn 2) and four values each for marked coarse and fine dig sites
(eqn 3). The rovers have four additional values for unmarked coarse
and fine dig sites, making their input a vector of 28 values (eqn
3). The observation radius for each agent is sampled from ∼ [5, 8]
during initialization.

Action Space Agents have two navigational actions (𝑑𝑥, 𝑑𝑦) ∈
[−2.0, 2.0]2. A dig site is marked when 𝑐 = 3 rovers visit it and is
excavated when 𝑐 = 3 excavators visit simultaneously.
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Figure 3: MAIM is trained in concert across five scenarios (Top row (A-D)). (E) shows the Pareto fronts discovered by MAIM on
each of the scenarios. The bottom row shows the softmax distributions 𝜇 that allocate agents to the scenarios (F-H) and the
average team fitness across them (I). The experiment highlights MAIM’s ability to compose teams with diverse agent synergies
and trade-offs that generalize across a wide set of tasks. Section 5.1 gives further insights into the performance and discovered
inter-agent relationships.

Rewards The conspecific utility is the dense agent-specific re-
ward that allows agents to learn primitive navigational behaviors
and is used by the QD process on all islands (5. An agent gets this
reward for simply visiting a dig site independently. The weights
𝑤0 and 𝑤1 for rovers, excavators and drones are set to [0.3, 0.7],
[0.8, 0.2] and [0.5, 0.5] respectively. For agents of class 𝑖 on a main-
land𝑚, the sum of their conspecific utilities is used as the cumu-
lative utility 𝑢𝑚,𝑖 to update the softmax distribution that dictates
their allocation to mainlands (eqn 1). The value of a dig site 𝑣𝑘 is
sampled from ∼ [1, 5] and the maximum number of fine sites to
excavate is set to𝜓 = 10. Team fitness Φ (eqn 4) is used by NSGA-II,
SPEA2, MRL and the mainlands on MCAA and MAIM.

4.3.2 Learning Parameters. The conspecific data 𝝉collected on
the islands is a dataset of (𝑑𝑎,𝑡 , 𝑑𝑘,𝑡 ) vectors for episodes of length
60. 𝑑𝑎,𝑡 is the distance to the closest agent 𝑎 and 𝑑𝑘,𝑡 is the distance
to the closest dig site at time 𝑡 . For the habitat problem, this vector
captures an agent’s inclination to team and visit dig sites. The
dataset on each island is used to train PCA ([1]; parameters from
[4]) to produce a latent space, used as the behavior space, for QD.

MAIM and MCAA use 𝑁 = 1000 policy updates on the islands
and mainlands between migrations. For fair comparison, MRL,
NSGA-II and SPEA2 use 2𝑁 updates for every 𝑁 updates in MAIM.
An iteration 𝑖 in section 5 therefore corresponds to 𝑁 updates for
MAIM, MCAA and 2𝑁 updates for the other baselines. MAIM,
MCAA and MRL use 𝛼 = 1𝑒 − 05 and 𝜈 = 0.01 for updating their
softmax distributions (equation 1).

5 RESULTS
5.1 Asymmetric Coordination
We start by evaluatingMAIM on five distinct scenarios in the habitat
problem, each of which requires learning a unique team compo-
sition, a Pareto front that can produce teams that maximize both
objectives (coarse and fine dig sites) and diverse agent synergies
that are generalizable across the five scenarios. Figure 3 presents
the 5 scenarios (top row A-D), the learned Pareto fronts for the sce-
narios (E), the average team fitness (I) of the 𝑒 = 5 best performing
elite teams (algorithm 2, line 9) and the distribution 𝜇 of agents on
the five scenarios (F-H).

In the first scenario, "Flock" (figure 3.A), the dig sites are con-
centrated in clusters, distributed uniformly across the environment.
Furthermore, this scenario is biased towards fine dig sites 𝐾𝑓 as
they are twice as likely to be generated as coarse sites 𝐾𝑐 . This is a
relatively easy task for rovers since their conspecific utility prefers
𝐾𝑓 (section 4.3.1) and it is widely accessible in clusters. A small
number of rovers are able to optimally mark sites as is evident from
their low distribution on this scenario (F). Excavators on the other
hand have a higher preference towards coarse sites 𝐾𝑐 and they
seem to be the most important class in this scenario (G), allowing
the teams to balance both objectives fairly well (E) and excavate
over 80% of the dig sites (I).

The second scenario, "Volatile" (figure 3.B), presents two chal-
lenges: 1) marked sites stay marked for a limited duration of 8
steps), after which they must be marked again by the rovers; 2)
coarse sites 𝐾𝑐 surround fine sites 𝐾𝑓 which are concentrated in
the center. To balance both objectives and perform optimally as
teams in this setting, we see a significant increase in the number of

6



rovers in teams (average 11 rovers per team compared to 6 drones
and excavators; F-H). Empirically inspecting the behaviors shows
that rovers spread out in the environment with some specializing
in re-marking inner 𝐾𝑓 dig sites while some venturing outwards to
mark 𝐾𝑐 . On an average, teams are able to excavate over 80% of the
sites (I) and the spread-out strategy seem to improve the overall
balance of objectives as evident in the Pareto front (E).

In the third scenario, "Constrained" (figure 3.C, top-left), we
shrink the environment to 25𝑥25 units. As expected, the team size
on this scenario reduces with a uniform team composition contain-
ing all three agent classes (average 2 agents of each class; F-H). An
easier environment also allows MAIM to find a dominating Pareto
Front that allows teams to maximize both objectives (E).

The fourth scenario, "Dispersed" (figure 3.C, bottom-right)
doubles the environment size without changing the number of dig
sites. This necessitates agents form strong synergies in order to
complete the mark-excavate-communicate inter-agent coupling.
Drones become the premier class in this scenario (H) and learn
to team up with rovers and drones, often keeping them in their
observation radius in order to capture any successfully excavated
sites. The overall team performance in this setting is the lowest (I)
with the Pareto front showing a higher bias towards fine dig sites
(E). We hypothesize that both excavators and drones heavily rely
on rovers in this scenario to lead them to marked sites, which shifts
the overall objective maximization slightly towards the preference
(conspecific utility) of the rovers (E).

The fifth scenario, "Variegated" (figure 3.D), combines motifs
from Volatile (limited duration dig sites with the higher valued
coarse sites 𝐾𝑐 spread away from the center) and Flock (site clus-
ters). The distribution 𝜇 for each class indicates a uniform team
composition (average 7 agents per class in each team; F-H) and
diverse strategies such as camping, spreading and following are
exhibited by all three agent classes. With over 80% dig sites exca-
vated (I), the Pareto front for this scenario shows wide coverage for
balancing both objectives.

This experiment shows the effectiveness of MAIM in producing
teams with asymmetric agents that learn diverse synergies and
specializations conducive to balancing team and conspecific objec-
tives across a wide set of scenarios, with (over 70% performance
across the five scenarios).

5.2 Adaptation to Held-out Tasks
A crucial aspect of robust teaming is the ability to learn generaliz-
able agent synergies and trade-offs that can be adapted to unseen
changes in the environment, agent or team dynamics. We evaluate
and compare MAIM’s ability to adapt with several multi-objective
and multiagent learning methods (section 4.2).

5.2.1 Training on Flock. We start by training all the baselines on
Flock (section 5.1). We evaluate two variants of MAIM: 1) MAIM
(S=1) which uses twomainlands (both assigned Flock); and 2) MAIM
(S=3) which uses three mainlands (assigned Flock, Constrained
and Dispersed). This allows MAIM (S=1) to potentially specialize
like MCAA, MRL, while MAIM (S=3) learns trade-offs and agent
synergies that can generalize across the three scenarios. For MAIM
(S=3), we report the average team fitness on Flock.

Figure 4: Fitness of teams in Flock (A), and in the held-out
Variegated task (B). In Flock, MAIM variants andMCAA have
comparable team fitness with over 80% sites excavated, which
is significantly higher than other baselines (A). On the held-
out task, MAIM (S=3) outperforms other baselines by a wide
margin (B). This highlights MAIM’s ability to learn generaliz-
able agent synergies and trade-offs that can adapt to unseen
changes in the environment.

Figure 4.A shows the performance of MAIM and the baselines
trained on Flock. Because MCAA is not designed for multi-objective
learning, we explicitly replace the selection mechanism in its evolu-
tionary method with the selection mechanism of NSGA-II (2, lines
7-9). This brings MCAA closer to MAIM (S=1). Similarly, NSGA-II
and SPEA2 do not account for multiagent teams, so we use the team
composition learnt by MAIM (S=3) to create teams for them.

MAIM (S=1) and MCAA have comparable team fitness on Flock
since both of them are equipped to learn specialized synergies and
trade-offs. This is also evident form their comparable Pareto fronts
(figure 5). MAIM (S=3) performs slightly worse in terms of average
team fitness on Flock, but its Pareto front shows a significantly

Figure 5: Pareto fronts of teams trained with MAIM variants
and the baselines. MAIM (S=3) learns a substantially higher
coverage in the objective space which allows it to adapt to an
unseen task without re-training (figure 4).
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higher coverage compared to the baselines. Agents trained with
MRL fail to learn in this setting (performance on the best MRL
island is reported) likely due to MRL’s tendency to over-specialize
(evident from its minimal coverage in the objective space), causing
agents to maximize their conspecific utilities at the cost of team
fitness [6]. Purely multi-objective methods NSGA-II and SPEA2
also perform rather poorly, partly due to their inability to learn
solely with the sparse team fitness (eqn 4).

5.2.2 Evaluation on a held-out task: Variegated. We choose the
Variegated scenario (section 5.1) as a held-out task since it offers
the richest variety in dynamics amongst the five scenarios and
consequently requires the agents to significantly change their inter-
agent and trade-off strategies.

We allow both MAIM variants and MCAA to update their soft-
max distribution (which dictates the team composition), without
re-training any policies on the islands or performing additional
evolutionary steps on the mainlands. We also pass on the updated
softmax distrbuion of MAIM (S=3) to NSGA-II and SPEA2 as before.

Agents trained withMAIM (S=3) are able to adapt their trade-offs
and inter-agent relationships rapidly (figure 4.B) and maintain their
average team fitness on this unseen task. The Pareto front learnt by
MAIM (S=3) (figure 5) supports this as it developed the highest trade-
off coverage during the initial training on Flock. The team fitness for
MAIM (S=1) and MCAA reduces considerably since both methods
learn to find a small subset of the Pareto front that allowed them
to specialize exclusively on Flock. A similar degradation is seen
for NSGA-II and SPEA2 which are unable to handle the changed
dynamics of the held-out task.

This experiment highlights MAIM’s ability to learn agent syner-
gies and trade-offs that can adapt to changes in the environment.

5.3 Agent and Team Objective Trade-offs
Finally, we briefly explore how the team task affects inter-agent
relationships and the conspecific utilities. Figure 6 shows the change

Figure 6: [Left] As the number of coarse dig sites𝐾𝑐 increases,
rovers have to increasingly work against their preference
towards fine dig sites in order to balance team objectives.
This is evident from their decreasing utility and increase
in inclination to team with other agent classes (decreasing
inter-agent distance). [Right] Although their personal util-
ity decreases overall, their coverage in the objective space
substantially improves as they learn to balance their utility
with the team objectives.

in rovers’ utility (left) and coverage in the objective space (right) in
response to a changing environment.

We start by modifying Flock, by replacing all the coarse dig sites
with fine sties. The conspecific utility of the rovers favours (section
4.3.1) fine sites which is fully aligned with the team objectives in the
absence of coarse sites. This is evident from the initial high rover
utility (figure 6, left). Although marking dig sites requires intra-
agent coupling (𝑐 simultaneous rovers), there is no incentive to form
strong inter-agent synergies at this point. Empirically, we observe
the rovers, excavators and drones spreading out in the environment
to independently focus on their conspecific objectives.

Subsequently, we replace 10% of fine sites with coarse sites after
every 𝑁 = 1000 iterations. An increase in coarse sites now forces
rovers to visit and mark them in order to maximize the team ob-
jective at a slight cost to their personal utility. This change is also
reflected in the increased coverage of rovers in the objective space
(figure 6, right) and by the increase in coupling with other agents
as excavators and subsequently drones learn to follow rovers in
order to balance both coarse and fine team objectives.

With its ability to concurrently balance team and individual
objectives, MAIM can aid in investigating the rich evolving tapestry
of agent synergies in response to the changes in other agents’
utilities, the tasks and the teams in which they operate.

6 DISCUSSION
This work introduces MAIM, a multi-objective multiagent learning
framework for the discovery of generalizable agent synergies and
diverse trade-offs that foster teamwork.

MAIM leverages a Quality Diversity (QD) process that allows
agents to learn diverse primitive behaviors that maximize their
agent-specific utility. Concurrently, a coevolutionary algorithm
evolves a population of teams (groups of agent policies) to find a
Pareto front of policies that can simultaneously optimize multiple
team objectives across a set of tasks. Periodic migration of policies
from the highest fitness teams (on the Pareto front) to the QD
process biases the diversity search process towards regions of the
behavior space that yield policies conducive to good team behaviors.
Likewise, the policies from the QD process are migrated to the
coevolutionary process to replace the worst performing teams, thus
improving the diversity in teams.

A softmax distribution governs the allocation of policies from
QD to the coevolutionary process and is updated after each mi-
gration so as to maximize the cumulative agent utility across the
team tasks. The competitive pressure arising from the changing dis-
tribution of asymmetric agents across the team tasks forces agents
to acquire generalizable inter-agent synergies that allow agents to
exercise diverse trade-offs between agent-specific and team objectives
in response to the dynamics of the task, team and agent behaviors.

MAIM’s design is primarily rooted in the known utility functions
paradigm [21]. While this paradigm offers a rich set of complex
problems, there is certainly value in exploring the closely related de-
cision support paradigm, in which a priori availability of the utility
functions is infeasible [22, 25]. In future work, we will explore the
possibility of learning inter-agent coverage sets that allow agents
to select and adapt their utilities in response to the tasks.
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